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A free-fleld conduction-type MHD propulsion unit is one of =he promising types [I]. The 
operating prlnclple can be t,~nderstood from an ideal model in the form of an infinitely long 
cylinder placed in an immobile conducting liquid. The magnetic field is set up by a current 
distributed over the surface of the cylinder iz(a) = io sin ma (r, u, and z are cylindrical 
coordinates and m is an integer). The electric current in the llquid is supplied by elec- 
trodes also distributed along the surfaced with the potential distribution on the electrodes 
in the form ~(a) -- ~o sin me; then the liquid contains mutually perpendicular electric and 
magnetic fields E and H shown in Fig. i, which set up a bulk force in the liquid f = (i/c); 
[j x H], which acts along the z axis. The cylinder experiences a force in the opposite 
direction. 

Some engineering developments [1, 2] of such propulsion units are based on magnetohydro- 
dynamic examination of ideal models, and the results have appeared in subsequent publications 
[3, 4]. 

It has been shown [5] for an induction-type MHD propulsion unit that there are major 
deviations from the ideal results if the length is finite. A method has been proposed for 
improving the efficiency by amplitude modulation. 

Interest attaches to an analogous study for a conduction device. 

i. As in [5], the energy characteristics are examined on a model in the form of a flat 
plate of finite width. We consider the variational problem for the optimum potential distri- 
bution over the width of the plate that provides maximum efficiency for a given magnetlc-field 
distribution. 

We consider a plate with width a on the x axis and infinitely extended along the y axis, 
which is in an unbounded conducting liquid of conductivity u and density p, and which is set 
into motion in its plane along the negative direction of the x axis on account of electro- 
magnetic forces. The magnetic field is produced by surface currents in the plane of the plate 
that are periodic along the y axis with period ~ (Fig. 2): 

i (x, y) = [i~ (x) e~ + i~ (x) e~] e ~klv, kl  = 2~/~ ( 1 . 1 )  

(hera and subsequently the symbols denoting the surface currents will be given either with 
subscripts or arguments in order to avoid confusion with the imaginary unit i). 

The surfaces of the plate (both sides) are ideally sectioned electrodes that have the 
potential distribution 

r (x) e~kl ~' (] x] ~ a12). 

The equation of continuity ~ix/~X + ~/~y = 0 gives us from (I.i) that 

i d~i(x) (1.2) 

and therefore the current distribution i(x, y) over the plate is completely determined by the 

i~ (x). 

2. To determine the electric field E and the magnetic field H in the liquid, we need to 
know the velocity distribution v. We assume that the velocity pattern around the plate, which 
is set in motion by the electromagnetic forces, does not differ from that in flow around a 
classical plate. This is so if 

N oH~a (2. I) 
= <<i, cZPUo 
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where N is the MHD interaction parameter; Ho, maximum magnetic field strength; uo, plate 
speed; and c, speed of light. 

We also assume that the magnetic Reynolds number is small: 

Rem = 4~uoa/c~<<t, ( 2 . 2 )  

which on account of the low conductivity of seawater (o = 5"10*~ is correct within 
fairly wide ranges in a and uo. On the basis of (2.2), we can take the magnetic field in 
the liquid as the field set up by the currents of (i.i). The latter is found by means of 
Fourier transformation and takes the following form for z > 0: 

H = --grad ,(x, y, z); ( 2 . 3 )  

= 2~i e%~ S %(k) e~hX--V h2 +k2z _. 

a/2 

t f e_i~dx" (2 .4 )  ~ (k) = 7:~ ~ i~ (x) 
-a /2  

H is defined by the following in the half-space z < 0: 

Hx(--z) -= --H=(z), Hy(--z) = --Hy(z), Hz(--z) = Hz(z), 

while in the plane z = 0 there are discontinuities in H x and Hy for Ixl~< a/2 on account of 
the currents of (i.i). 

The electric-fleld potential satisfies the following equation [6] in a coordinate system 
coupled to the plate for a homogeneous liquid with a scalar conductivity u = const subject 
to (2.2): 

A r  v=(i/c)HyOv~/Oz, ( 2 . 5 )  

where v = Vx(X, z)e x is the velocity field. The right side of this equation describes the 
distribution of the space-charge density Pe in the liquid: 

I 0v 
-- H J Pe= ~ Y 0z �9 

We do not know the exact expression for the velocity distribution Vx(X, z) within the boundary 
layer for a plate of finite width in a flow having a large Reynolds number; however, if we 
restrict consideration to a thin boundary layer, i.e., to the case 

max A<<min(L,  a) (2.6) 

where ~(x) is ~he thickness of the boundary layer, we do not need to know Vx(X, z) precisely 
in order to determine ~. The distribution of Pe in the boundary layer in (2.6) may be re- 
ferred to a surface distribution, whose density Z is independent of the velocity profile in 
the boundary layer. In fact, if (2.6) applies, Hy varies only slightly across the boundary 
layer, and 
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A(x) A(~) 
0% (x, z) 2"~u o J[ ~-~2 .t' Hv (x, y, z) ~ dz = -- :=+o (2.7) E = 2 t P~ (x' z) dz = -- Hv 

0 0 

(here we have used the fact that the velocity of the liquid outside the boundary layer is 
given by (2.1) as uo), and (2.5) becomes 

A(D= (2Uo/c)Hv ! :=+of(z), (2.8) 

where 6 (z) is a delta function and the factor 2 corresponds t o  charge on both sides of the 
plate. 

Two possibilities occur on substituting the boundary conditions. Firstly, we can 
specify the potential distribution at the electrodes (i.e., in the band ] x l ~  U/2; z ffi 0); 
then one determines the potential outside the plate by integrating (2.8) in elliptical co- 
ordinates in the (x, y) plane, with the results expressed in terms of Mathier functions, 
which hinders analysis of the integral characteristics. The problem is simplified if we 
note that the z component of the electric field in the plane z = 0 is zero outside the pla=e 
for any potential distribution on the electrodes. This enables us to reduce the problem to 
one for the half space z > 0 with the following conditions: at the boundary z = 0 

7;-~ : = + 0  !Eo(X) for Ixl<~a/2, (2.9) 
ar =E(x)  e~kl ", E(x)=iO for ]x]>a/2 

and at infinity 
(I) l , : ~  = 0. 

The function Eo(x) in (2.9) characterizes the distribution of E z on the plate on the positive 
z side (E z has the opposite sign on the other slde). The potential distribution on the elec- 
trodes that provides this Eo(x) is found from the solutlon. Note that EzIz=+o can be repre- 
sented as the sum of the electric field 2~E due to the surface charges Z induced by the motion 
of the liquid and the fleld E1zlz=+o = E1(x)e ikxy set up by the electrodes in the immobile 
liquid. Then from (2.3), (2.4), and (2.7) we have 

2~% i Eo (x) = -'-~'., i1(k)eikXdk+El(x) (Ixl<~a/2), (2.10) r  
- -go  

The problem of (2.8) and (2.9) is solved by the standard Fourier transformation method. 
We put 

E (x) = ~ E (k) e~hXdk, 

and write the solution for z > 0 as 

(x, v, z) = e% v ~ e (kl e ~x-Vh~+k~ dk. 
_. Vk ~+k~ 

(2. l l )  

3. We calculate some integral quantities: the thrust acting on the plate and the input 
electrlcal power. The force F and power Q are referred to unit length of the plate along 
the y axis, where the force is equal in magnitude to the total force acting on the corre- 
sponding volume of liquid, while the sense is the opposite, i.e., 

The input power is 

c o  met 
" 

4} ~ e c ,  

<Q>=2~ ~ (E.j)dxdz 
0 --oO 

and goes to performing mechanical work on the liquid and to Joule hea=ing. Here the < > de- 
note averaging with respect to y; f = (i/c)[~ x HI is the bulk force density. 
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On the assumption of (2.6) we neglect the volume occupied by the boundary layer and 
calculate the current density for the entire space as J = u[E + (uo/c)(e z x H)]; the result 
from using (2.11), (2.3), and (2.4) is 

l'l.0 f= 2E (k) tl (k) 2nu~ ( 
k ~ + 

2n~  ~ "* -- c-"~ i x (k) i~ (k) i + "--~ ] dk,  
(F=> 

-~-S E-(kJ E* (}) -V..~_+(2n%/c~)k~ E (~) i 1 (~) dk.  <Q> 2n(~Re 

From (2.10) 

E(k)  = (2~Uo/C~)ix(k) -~ Ex(k), 

and the result can be simplified somewhat: 

2nu o 
2a2( ~ ,-, ~ 2E z (k) i l (k) - - T  i l (k) i~ (k) k2/k~ 

<FO = ~ n e  _| Vk-~-+ k~ 

E 1 (k) E:  (k) -~ (2~XUo/C'*) E 1 (k) i 1 (k) 
2 ~  <q> Re 

_| V T +  k~ 

dk; (3. i) 

dk.  (3.2) 

For convenience in analyzing the result we put it in dimensionless form; let the dimension 
a, the maximum current i x (denoted by io), and Ho = 2wio/c, uoHo/c be the corresponding 
scales. We retain the previous symbol for the dimensionless coordinate x and put i,(x), 
Ez(x) as 

i1 = i0[($)' E1 = - I ( u O H o / c ) e l ( x )  �9 

Then the Fourier components will be 

i, (k) = ioai (q), 

e* (q) t 
(q) = 

E I (k) --  (uoHo/c) ae x (q), 

J e-iqxd.r~, 
I i (x) I 

(3 .3 )  

We substitute (3.3) into (3.1) and (3.2) to get 

<F~> = - (2~UoH~a,/c') F,, 

= Re ~ % (q) ~* (q) - (q2/2q~) ~ (q) ~* (q) FI 

_.~ V# + q~ dq, 
�9 I 

<q> = (2~'ruo~S~a2/c9 qx; 

dq, 
r 

(3.4) 

(3.5) 

Here qo = kza = (2~/X)a = n~ is the dimensionless wave number, which defines the number n = 
a/(A/2) of half-waves in the current of (I.i) within dimension a. 

The efficiency is 

= I<FD luo/<Q> = F~/Q~ 

and is the ratio of the dimensionless force to the dimensionless power. 

4. We now determine the distribution of the normal component of the electric field 
that provides the maximum efficiency. Here we consider the following variational problem: 
with a given Ho and i(x), which determines the distribution of the magnetic field, we have 
to find the optimum at(x) which minimizes <Q> while providing the necessary thrust <Fx>. 
The necessary thrust is determined by the resistance force, i.e., l<Fx>[ = cf • 2a0u~/2, 
and then from (3.4) and the definition of (2.1) we have 

/7* --" C/2~N. (4. i) 
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Therefore, ex(x) must provide mlnimum Q~ subject to condition (4.1) on F,; the problem is 
therefore solved with an undetermined Lagrange multiplier, and the condition ~(Q~ + XtF~) = 
0 for the functionals of (3.5) gives 

'~ ~% (~) [~ '  (q) + (~ + ~,~) ~* (~)] 
Be dq 0 J (4. 2) -| y # +  ~] 

(X: is the undetermined Lagrange multiplier). Without loss of generality, the variation in 
the function may be taken as 6el(x) = r -- xo), where Ixol < 1/2; we then get the Fourier 
components as ~e:(q) = (s/2~)e-iq xo and substitutethe latter into (4.2) on the basis that E is 
in general a complex number co get 

i 2e I (q) ~- (i -~ ~'1) i (q) eiqXo~tl O. 

This equation must apply for all xo that satisfy I xo] < 1/2; also, e, (x) and i(x) are identi- 
cally zero for Ixol • 1/2, which means that 

2el(q) + (I + ~)~(q) = 0, i.2.. ei(x) = (I/~)~(z), ~ = const. 

Therefore, the optimum system has the distributlon of EIz over the width proportional to 
ix; the overall z component of the electric field is then given by (2.10) as also proportional 
to i x , and the dimensionless analog of e,(x), viz., e(x), for the total field is 

e(z) = ( l  + t /~) i (z) .  ( 4 . 3 )  

This means that the space charge created by the flow of the liquid sets up an electric field 
that strengthens the initial field created by the electrodes in the ~r,r, obile liquid. The 
maximum value of i(x) over the segment --i/2~ x ~-~ 1/2 is 1, so the factor 1/71 = 1 + 1/7 de- 
fines the scale of the electric field in the system: 

No = ( l  -6 t/?)uoHo/c. 

Consequently, 7, = 7/(7 + i) is the ioad parameter (71 = uoHo/cEo), which determines the 
efficiency of this system. 

We now determine the potential distribution on the plate (on the electrodes) for the 
optimum system. This follows from (2.11) and (4.3) as 

] UoH~ aeiqoY~(x), (p(x)---- ~ i ( q ) ( y~ ) - l e~aXdq .  (4.4) O(x,~,.O) % ~ 

5. Then the optimum system has the following dimensionless force, power, and efficiency, 

which are denoted by Fo, Qo, rio: 

Fo = - % I1 (qo) (~o), Qo - - -  11(qo), 
'Y1 7~ 

?1 I, (q,) ] 
no=~ , ,  t 2 (~=%)L(_%)] '  (5.1) 

- - o c ,  - - , ~ o  

This shows that the integral 12 diverges in the case i(x) = 1 (i x = io = const over the 
width of the plate) when i(q)~ sin (q/2)/(q/2) ; the electromagnetic field sets up an infinite 
resistance force instead of a thrust. Physically this is explained by the closing currents 
iy being localized at the edges of the plate in accordance with (1.2), i.e., 

;_:,~ § 
The magnetic field set up by these currents at the edge of the plate is infinite, and this 
is responsible for =he infinite resistance. 

In practice, of course, the distribution of i x must be such that iy does not exceed io. 
For this purpose we put i(x) as 

i(x) (1 -- e -(~ (1 -- e-(~ -x)%) = (~ _ ~-o,~ao)~ ( Ix L~< i /2 ) .  (5.2) 
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Then we have i(x) = 1 over almost all the width of the plate, apart from the ends of the 
range [--1/2, 1/2]; i(x) falls to zero at the ends of the range over segments of order A~ = 
i/qo. Then (5.2) meets the condition l ia[ < io, and the modulus of the magnetic field does 
not exceed Ho at any point. The distribution of (5,2) corresponds to the Fourier transform 
of i(q), which decreases as 1/q 2 for lqI large; consequently, the intergrals I: and Ii con- 
verge. 

As the main peak in the power spectrum of li(q)[' has a width of order w, the integrals 
I, and Ia appearing in (5.1) may be expanded as asymptotic series in powers of i/qo. Par- 
seval' s inequality 

~o I / 2  oo I / ~  

,f I~(q)l~dq=(~/2~) ] i~@)l 'd~, ~ [ l l ( # ) r q ~ ' d #  = - - ( t / 2 ~ ) , [  f ' ( x )  i * ( x ) a z  
- ~  - l i . ,  - ~  -l/.z 

enable us to calculate the coefficients to i/qo and I/qo i, and the result for the i(x) defined 
by (5.2) is 

Then 

F~ "2~o YI 

~1o=71 t 2(t-~, , )  % 
0.3) 

where the principal terms in the expansion correspond to an infinite plate (more precisely, 
part of the plate of width a conceptually cut from an infinite plate with i(x), e~(x) con- 
stant along x), i.e., 

F = : (I12n%)(I -- 71)/71, n ~ = 71. (5.4) 

We see from (5.3) that the end-effects have a marked influence for 7t § i; in fact, (5.4) 
shows that the system works as a propulsion unit for 0 < y~ < 1 if we neglect the end-effects, 
i.e., F > 0, Q > 0). We see from (5.1) that the end-effects cause the thrust to become zero 
for y~ = 7o(qo) < I, and for Yo < Y, < i the system acts as an electromagnetic brake (since 
then Qo > 0). Only for 7~ > 1 does the system act as a generator, as in an infinite system. 

Results for Fo from (5.1) are shown in Fig. 3; for qo = ~ we have Yo = 0.75, while for 
larger qo the value of 7o approaches one, and the range [7o, 1] of values of 7~ for braking 
action becomes narrower. The maximum value of qo in Fig. 3 is taken as 10T. The asymptotic 
formulas of (5.3) can be used for qo > i0 for the propulsion range of practical interest with 
0 < y, < 0.9; for clarity, the broken llne in Fig. 3 shows the asymp=otlc curve for qo = 10T; 
clearly, the difference is slight. 
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The solid lines in Fig. 4 show q(qo) for various 7x. The efficiency tends to the limit 
q. = 71 for comparatively small qo (as (5.1) shows, the less 7~, the lower the qo at which 
n. is attained). This conduction unit differs substantially from an induction unit, in which 
[5] q approaches q~ at very small wavelengths (i.e., when numerous waves in the traveling 
field fit into the width of the plate). The maximum value of qo in Fig. 4 has been taken as 
ii~, while the asymptotic formula of (5.3) can be used to calculate qo for large qo for all 
yI<~.0.9. 

It is of interest to examine how the efficiency of the system is dependent on Ho: to 
obtain the relationship we must equate the Fo of (5.1) to cf/2~N, as (4.1) implies, and 
determine the necessary value of y~; from yx we get the result 

�9 1~(qo) 
= W [W + (1/2) 12 (qo)] [W + I t (qo) + (i/2) 12 (qo)]' W = cl/2zN. (5 .5 )  

The parameter W relates the resistance coefficient cf and the parameter N of the MHD inter- 
action of (2.1) and is a universal parameter for describing the relationship. A parameter 
of this type was first used in [i], so W may be called the Way parameter. 

We see from (5.5) that the ~(W) relationship is not monotone when the end-effects are 
considered: the efficiency falls to zero for W = 0 (i.e., for Ho - ") and for W = ~ (Ho - 0), 
while for W = W,, where 

W ,  = ]/(i12) I~(~) I11 (~) q- (i/2) 12 (qo~, (5 .6 )  

we get the maximum value of q: 

~max = z~ (qo) ( 5 . 7 )  
I1 (qo) + 12(qo)+V 12 (qo) [21t (qo) + 12 (qo)]" 

This constitutes the essential difference between these results and those of [i], which re- 
late to an ideal.model (the efficiency of an ideal model in the present planar geometry is 
~, = (I + 2~qoW) -I and increases monotonically as W decreases (Ho increases)). 

Therefore, a real conduction system resembles the induction system of [5] in having an 
optimum value of HoD which is denoted by H, and is dependent on qo. For given qo, a, and 
uo it is reasonable to increase Ho only up to H, (from the viewpoint of efficiency)~ since 
Ho above H, results in reduced efficiency. 

The solid lines in Fig, 5 show the ~(W) of (5.5) for various qo up to i0~. The points 
show the ~max for the corresponding qoD and the broken line at these points shows qmax(W), 
which is the result of eliminating qo from (5.6) and (5.7). Figure 4 shows the W,(qo) of 
(5.6) (broken line). It is clear that W, decreases as qo increases, and therefore H, in- 
creases. 

Figure 5 shows that it is necessary to work at small wave parameters in order to obtain 
large n or (for a given of) at large N. For example, n = 0.75 is attained for qo = i0~, W = 
10 -s. If we assume cf = 2.10 -s, we have N = cf/2~W = i/~, i.e., only by a large stretch of 
the imagination can the MHD interactlonparameter be takenas satisfying (2.1). Therefore, 
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the theory needs to be revised for the conditions under which high efficiency is attained 
because the bulk forces influence the velocity-field structure. 

Figure 6 shows ~(x) that define the optimum potential distribution on the electrodes 
for various qo from (4.4). 
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COMPARISON OF PROSPECTIVE ENERGY SOURCES WITH THOSE IN USE 

B. V. Voitsekhovskii UDC 621.548 

In the Middle Ages the main energy source was the wind. Its energy was utilized by the 
sailing fleet and windmills. According to data of the Third International Symposium on Re- 
newable Energy Sources (Turkey, 1977) the yearly per capita production of energy in Europe in 
the Middle Ages was 200 kWh. Windpower technology was particularly highly developed in 
Holland and Denmark. 

At the present time half of all the world's power production is based on a very rapidly 
diminishing nonrenewable energy source -- oil. The index of oil reserves, defined as the 
ratio of the proved recoverable reserves to the yearlyextraction, is steadily declining. 
Before this index reaches values of the order of i0 or smaller~ scientists must find a 
suitable economical equivalent, preferably from renewable sources, and succeed in becoming 
familiar with it on a large scale before power failures occur with all the consequent national 
economic shocks. 

Coal reserves are practically inexhaustable in the present epoch, but difficult minin 8 
conditions keep its cost high. 

The prime cost of oil in the world market and the selling price based on it have risen 
continuously in recent years~ From 1970 to the present time the cost of 1 ton of crude oil 
has increased more than tenfold. The prime cost of 1 kWh of electric energy generated by a 
thermal electric power plant operating with fuel oil is 0.8-0.9 kopecks [1]. 

Water power, which makes up 19% of the total installed power of all electric power plants 
in the Soviet Union, cannot be considered a serious successor of oil energy resources [2], 
The prime cost of i kWh generated by a hydroelectric power plant is 0.4 kopecks [3]. 

At the present time atomic power supplies a still smaller fraction of the total power 
supply. Taking account of the continuously increasing demands for purity of the environment, 
one can assume a continuous increase in the cost of 1 kWh of atomic energy. Its unprofitable- 
ness in stationary units will manifest itself more and more strongly with time. In addition 
to the purely monetary expressions of the high cost of atomic energy, its nonrenewabillty is 
further aggravated by the fact that it diverts a disproportionately large number of highly 
qualified workers from other understaffed branches of engineering where they might better 
serve the national economy. 
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